

Exclusive heavy flavor production in ATLAS

G. Chiodini - INFN Lecce (Italy)

On behalf of the ATLAS Collaboration

DIS 2011

XIX International Workshop on Deep Inelastic Scattering and Related Subjects

April 11-15th 2011 Newport News, Virginia

Overview

- Heavy Flavor in ATLAS
- ATLAS detector and 2010 data sample
- Full reconstructed HF final states
 - ☐ Di-muon in final state
 - **>** J/Ψ
 - Open beauty
 - ☐ Hadronic decay
 - Open charm
- Conclusions

Heavy Flavor in ATLAS

EARLY DATA:

- Detector calibration candles: efficiency, resolution, scale, alignment, B and material mapping.
- Understanding heavy flavor hadro-production and polarization at the highest energy and smallest x regimes
- Understand background to other rare and/or interesting processes

INTEGRATED LUMINOSITY > 1 fb⁻¹:

B and D rare decays and CP-violation

μ tracking, Id and triggering

***KEY SUB-SYSTEMS for B PHYSICS**

- Inner detector inside 2 T solenoid
 - ☐ Tracking, vertexing and b-tagging
 - \rightarrow $\sigma(1/P_T)\sim 1.5\%$ at low P_T
 - \rightarrow $\sigma(d0)\sim 10$ um at high P_T
- **Standalone muon spectrometer built** around 4-5 Tm air core toroids
 - Monitored Drift Tube ($|\eta|$ < 2.0) and Cathode Strip Chamber (2< $|\eta|$ < 2.7) for precision tracking
 - $> \sigma(1/P_T) \sim 10\%$ at 1 TeV
 - □ Resistive Plate Chamber $(0 < |\eta| < 1.01)$ and Thin Gap Chamber $(1.01 < |\eta| < 2.5)$ for □
 - > level 1 trigger (σ_{τ} ~1ns) and 2-nd coordinate
 - Fast geometrical coincidence (roads)
- High Level Muon Trigger (HLT) with software algorithms
 - ☐ Single muon and di-muon triggers

1μ seed by L1 search 2 μ's

2μ seed by L1

Data sample 2010

D dσ/dη and dσ/d P_{T}

 $B^{+/-}\rightarrow J/\Psi K^{+/-}$

 $J/\Psi d\sigma/(d\eta dP_T)$

 $B_{s(d)} \rightarrow J/\Psi \phi(K^*)$

Efficiency from Tag&Probe

Unbiased Efficiency maps from T&P:

- Reco vs Inner detector (next slide)
- L1 vs Reco
- High Level trigger vs L1&Reco
- Inner detector efficiency almost 1

Tag = Combined muon matched with muon trigger to remove trigger bias

Probe = ID track 1000 combined with the Tag to 500 get a J/ Ψ mass (MS and trigger not used)

0.1<|η|<1.1 3 GeV <P_T<4 GeV

Efficiency=
Matched Probe Signal/
All Probe Signal

Muon reconstruction:

- Combined (CB): ID track combined with MS track
- Segment Tag (ST): ID track matched with MS segments

Muon Reconstruction Efficiency

J/Ψ double differential xsec

$$\frac{d^2 \sigma_{J/\Psi}}{dP_T dy} B(J/\Psi \to \mu^+ \mu^-) = \frac{N_{J/\Psi}^w}{\Delta P_T \Delta y}$$

Signal yield corrected event-by-event with weight w to get true yield

$$N_{J/\Psi}^{w} = N_{J/\Psi} w \quad w^{-1} = A M \left[1 - (1 - \varepsilon_{trig}^{+})(1 - \varepsilon_{trig}^{-})\right] \varepsilon_{reco}^{+} \varepsilon_{reco}^{-}$$

- A=A(P_T,η,λ) kinematical acceptance of J/Ψ and depends on unknown J/Ψ polarization λ (see back-up slide)
- M bin migration factor to account for resolution effects evaluated from data
- $\varepsilon^{+/-}_{trig}$ (P+/-_T, $\eta^{+/-}$) charge dependent single muon trigger efficiency (from T&P)
- $\epsilon^{+/-}_{reco}(P^{+/-}_{T},\eta^{+/-})$ charge dependent single muon offline reco efficiency (from T&P)

J/Ψ inclusive cross-section

2.27 pb⁻¹

0<|y|<0.75

(others y bins in back-up slides)

Double differential cross-section extracted from binned likelihood fit to mass spectra in 4x15 (y, P_T) bins

MORE ON J/Y ON THE TALK OF G. PASZTOR "VECTOR-MESON PRODUCTION IN ATLAS"

- •Spin-alignment systematic shown by envelope on cross-section data (next polarization meas.)
- Good agreement ATLAS and CMS
- P_T up to 40-70 GeV (more high P_T stat. in 2011)

$B^{+/-}$ → $J/\Psi K^{+/-}$ observation

- Clear event topology and trigger
- Reference channel (BR rare decays such as $B_s \to \mu^+\mu^-, ...$)
- Calibration tool:
 - ☐ Inner detector calibration from Mass and Lifetime
 - □ b flavor tagging for CP violation studies (self flavor tagged)

Unbinned maximum-Likelihood fit with Gaussian signal and linear BG

- Muon pair in a tight J/Ψ mass window
- Muon pair refitted with J/Ψ world average mass to 3-th track with K mass hypothesis to a common vertex with chi2/dof<6
 - mass error used in signal PDF
- Overall P_T of the 3 tracks above 10 GeV
- Transverse decay length>300 μm

 $m_{J/\psi K^{\pm}}$ (MeV) $M(B^{+/-})=5283.2\pm2.5~MeV~(5279.1\pm0.4~MeV~pdg~av.~online)$

More selection details in back-up slides

$B_s \rightarrow J/\Psi + \phi(K^-K^+) \ vs \ B^0 \rightarrow J/\Psi + K^*(K^+\pi^-) \text{ in the position regions}$

 $B_s \rightarrow J/\Psi + \phi(K^-K)$ important for mixing and CP-violation:

- B_s not accessible to B-factories
- CP-violation due to mixing and expected O(10⁻²). High sensitivity to New Physics.

 $B^0 \rightarrow J/\Psi + K^* (K^+\pi^-)$ is testing ground for previous channel:

- equivalent topology and similar helicity structure
- decays differ for spectator quark
- more copious production
- self flavor tagging

$B_s \rightarrow J/\Psi + \phi$ and $B^0 \rightarrow J/\Psi K^*$ observation INFN

Muon pair refitted with J/ Ψ world average mass to 3-th and 4-th track to a common vertex with chi2/dof<2(2.5)

Unbinned maximum-Likelihood fit with Gaussian signal and linear BG (plus exponential for B⁰)

Proper time τ cut increase significantly S/N

		m_B	σ_m	$N_{ m sig}$	$N_{ m bkg}$	
B_d^0	no τ cut	$5278.6 \pm 1.3 \text{ MeV}$	$36.8 \pm 2.0 \text{ MeV}$	2680 ± 150	10280 ± 110	
	with τ cut	$5279.6 \pm 0.9 \text{ MeV}$	$38.8 \pm 1.3 \text{ MeV}$	2340 ± 80	1330 ± 60	
B_s^0	no τ cut	$5363.6 \pm 1.6 \text{ MeV}$	$21.9 \pm 1.9 \text{ MeV}$	413 ± 36	764 ± 17	
125423	with τ cut	$5364.0 \pm 1.4 \text{ MeV}$	$26.6 \pm 1.5 \text{ MeV}$	358 ± 22	90 ± 7	

The errors indicated are due to data statistics only.

Open Charm hadronic decay

$$D^{*+} \to D^{0} \pi_{s}^{+} \to (K^{-}\pi^{+}) \pi_{s}^{+}$$

$$D^{+} \to K^{-}\pi^{+}\pi^{+} + cc$$

$$D_{s}^{+} \to \phi \pi^{+} \to (K^{-}K^{+}) \pi^{+}$$

- Unbiased triggers (No muons to trigger):
 - ☐ Minimum Bias Trigger Scintillator trigger. Located between Inner detector and endcap CALO.
 - ☐ Random triggers with minimum bias confirmed by ID tracks at level 2 trigger
- Three tracks from weak decays with $|\eta|$ < 2.5 and P_T min ranging from 0.7 to 1 GeV. NO PID!!!
- D^(*) meson cuts:
 - $P_T>3.5$ and $|\eta|<2.1$
 - $ightharpoonup P_T/\Sigma E_T^{\mu-track+calo} > 0.02$ (hard fragmentation)
- Fitted mass and width in agreement with MC and pdg average (online)

$D^{*+/-} \rightarrow D^0 \pi^{+/-} \rightarrow (K^{-/+} \pi^{+/-}) \pi^{+/-}$

Modified Gaussian for signal

Gauss^{mod}
$$\propto \exp[-0.5 \cdot x^{1+1/(1+0.5 \cdot x)}]$$

where $x = |(\Delta M - M_0)/\sigma|$

Threshold curve for BG

$$A \cdot (\Delta M - m_{\pi^+})^B \cdot \exp[C \cdot (\Delta M - m_{\pi^+})]$$

- D⁰ candidates with $K\pi$ and πK hypothesis pointing back to PV
- Soft pion pt>250 MeV and $|\eta|$ < 2.5
- Transverse decay length Lxy>0
- Wrong-sign π_s +K- π -and c.c.

 $M(D^*)$ - $M(D^0)$ =145.41±0.03MeV (pdg av. 145.421 ± 0.01 MeV) $M(D^0)$ =1866.1±1.3 MeV (pdg av. 1864.91 ± 0.17 MeV)

$\mathrm{D}^{+/-} ightarrow \mathrm{K}^{-/+} \pi^{+/-} \pi^{+/-}$

- \blacksquare D^{+/-} pointing to PV and L_{xy}>1.3 mm
- Reject $D^{*+/-}$ with $M(K\pi\pi)-M(K\pi)<152$ MeV
- ■Reject $D_s \rightarrow \phi \pi$ with ϕ mass ±8 MeV and MC/Data subtraction of small remaining $D_s \rightarrow KK\pi$
- Angular cuts to suppressed combinatorial BG:

 \Box cos(θ *)>-0.8: K angle in D rest frame wrt line-of-flight in lab frame

1.1 nb⁻¹ Yield ~ 1.5k D^{+/-}

 $M(D^{+})=1870.4\pm0.9$ MeV (pdg av. 1869.5 ± 0.4 MeV)

$D_s^{+/-}\!\to \phi\pi^{+/-}\!\!\to (K^-\!K^+)\pi^{+/-}$

 $M(D_s)=1975.2\pm2.3 MeV$ (pdg av. 1969.0 $\pm1.4 MeV$)

- \blacksquare D_s pointing to PV and L_{xy}>0.4mm
- Angular cuts to suppressed combinatorial BG:
 - \Box cos(θ*)<0.4: π angle in D_s rest frame wrt line-of-flight in lab frame
 - \Box $|\cos(\theta')|^3$ | >0.2 : K angle wrt π in ϕ frame
- No substantial contamination from $D^0 o KK\pi$

Non Relativistic Breit Wigner convoluted with a Gaussian for Signal and Threshold curve for BG

Open Charm differential xsec do/dP_{TINFN}

- HF hadro-production from NLO calculation matched with Leading Log Parton Shower MC
- Uncertainties due to:
 - renormalization scale
 - factorization scale
 - small: q_{mass}, PDF and hadronization

- Experimental uncertainties dominated by: luminosity, track reconstruction and selection and D selection efficiency
- Data in visible kinematic region within the large theoretical uncertainties

Conclusions

Excellent performance of trigger, tracking and vertexing

- key features for Bphysics
- 1. New J/Ψ production results in 7 TeV pp collisions using 2.4 pb⁻¹
 - ✓ up to very high P_T (40 GeV ~ 70GeV)
 - ✓ NEXT: polarization measurements
- 2. Reconstructed 5300 B_u , 2500 B_d , and 400 B_s using 40 pb⁻¹
 - \checkmark NEXT: double life time and B_d helicity amplitude
- 3. Clear D*±, D± and D_s± signals reconstructed using 1.1 nb⁻¹
 - ✓ Visible differential cross-section in agreement with the NLO predictions within the large theoretical uncertainties

Heavy Flavor program just started. Much more statistics at higher pt and analysis available soon with 2011 data.

Back-up

ATLAS detector

Three trigger levels

- L1: hardware selection of high pt object from MS and CALO (40MhZ to 75 kHz)
- L2: software confirm of L1 with all systems in Region Of Interest (2 kHz)
- L3: software with precise offline reconstruction algorithms (200 Hz)

Inner detector ($|\eta|$ <2.5)

- Vertexing: Pixels
- $\sigma(d_0)$ ~10um at high P_T
- Tracking: Strips + TRT
- 2T solenoid
- $\sigma(1/P_T) \sim 1.5\%$ (low P_T)

Calorimeters ($|\eta|$ <5)

- EM: accordion Pb/LAr σ/E~10%E-1/2⊕0.7%
- HCAL:Fe-Sci σ/E~50%E-1/2 ⊕3%
- FCAL:road-tube W-Cu/LAr ((3.2<|η|<5)

Muon System ($|\eta|$ <2.7)

- Spectrometer: Monitored Drift Tube+ Cathode Strip Chamber (2<|η|<2.7)
- 4-5 Tm air core toroids σ/P_T~10% at 1TeV
- Trigger: Resistive Plate Chambert + Thin Gap Chamber σ,~1ns

Inner detector perfomance

J/Y mass resolution vs η

PV resolution vs N tracks

Data sample 2010

- Trigger setting changed according to increasing instantaneous luminosity
- Peak luminosity: 2.1x10³²cm⁻²s⁻¹
- Measured luminosity uncertainty ~ 3.4%:
 - relative value run-by-run from dedicate monitor LUCID
 - absolute value from beam current and IP size from "van der Meer" scans

Inner Tra Detect	Calorimeters			Muon Detectors					
Pixel SC	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC
99.1 99.	9 100	90.7	96.6	97.8	100	99.9	99.8	96.2	99.8

Luminosity weighted relative detector uptime and good quality data delivery during 2010 stable beams in pp collisions at vs=7 TeV between March 30th and October 31st (in %). The inefficiencies in the LAr calorimeter will partially be recovered in the future.

Data quality

- Uptime and data quality during stable beam extremely good for all sub-detectors.
- All sub-detectors reached the design performance

Quarkonia observation

$$J/\Psi, \Psi_{\text{2s}} \, Y_{\text{ns}} \rightarrow \mu^{\text{+}} \mu^{\text{-}}$$

Trigger: single muon + several di-muon triggers

Selection: opposite charge μ pair (P_T>4GeV,2.5GeV) with at least 1 combined track

Fit : Gaussian signal line shape and 3-th order (4-th order) polynomial BG

J/Ψ non-prompt fraction

J/Ψ from B decays separated by not null pseudo-proper time

$$\tau = \frac{L_{xy} \, m_{\text{PDG}}(J/\psi)}{p_T(J/\psi)}$$

 τ from Lxy=<u>L</u> P_T/ P_T with J/Ψ P_T (B not reconstructed)

Maximum likelihood unbinned SIMULTANEOUS FIT to $m_{\mu\mu}$ and τ in (P_T,y) bin to extract the non-prompt fraction

•F_{BG}: =2-nd order polynomial

Pseudo-proper time PDF:

- P_{Siq}: Exp(non-promt) + Delta (prompt) conv. with Gauss
- P_{BG}: Double Exp + Delta conv. with Gauss

J/Ψ non-prompt and prompt

cross-section

- Non-prompt cross-section in agreement with Fixed Order Next Leading Log calculation from B→J/Y+X within errors.
- Prompt cross-section in marginal agreement with partial Next-to-Next Leading Order calculation Color Singlet and Color Evaporation Model within errors.
 - Crucial to measure quarkonia polarization

0<|y (J/ Ψ)|<0.75 others in back-up slides

Color Evaporation Model:

q<u>q</u> cross-section fraction under open flavor threshold. Include feed-down from higher states.

Acceptance vs J/Y polarization INFN

$$\frac{d^2N}{d\cos\theta^*d\phi^*} \propto 1 + \lambda_\theta\cos^2\theta^* + \lambda_\phi\sin^2\theta^*\cos2\phi^* + \lambda_{\theta\phi}\sin2\theta^*\cos\phi^*$$

quarkonium rest frame production plane

Acceptance variation evaluated with 5 most extreme cases (see back-up slide). FLAT polarization state : λ_{θ} =0 λ_{ϕ} =0 λ_{θ} =0 taken as central. Polarization, if any, expected at high P_T.

Source of systematics

- Acceptance
- ■Bin migration due to resolution effect
- ■Muon reco efficiecy
- ■Trigger efficiency
- ■Vertex efficiency
- Luminosity

Spin-alignment evaluated by envelope on cross-section data

J/Y inclusive cross-section

J/Ψ non-prompt fraction

J/Ψ prompt cross-section

Production Models

Color Evaporation Model: qq xsec fraction under open flavor threshold (unpolarized)

Color Singlet Model

NRQCD (comparison not shown here, polarized at high pt)

Only one diagram shown

M^H = NP matrix (soft gluons emission for colorless final meson) from data

$$\sum \hat{\sigma}(ij \to c\overline{c}[n] + x) \langle \mathcal{M}^H[n] \rangle$$

n=color,spin,L (Octet included)

$B \rightarrow J/\Psi + X$ cross-section

J/Ψ cross-section systematic

$B^{+/-} \rightarrow J/\Psi K^{+/-}$ selection

- Triggers:
 - ☐ Single and di-muon L1 triggers when High Level Trigger not active.
 - ☐ Single muon High Level Trigger (pre-scaled at higher L)
 - ☐ Di-muon High Level Trigger (thresholds ranging from 4 to 10 GeV)
- Collisions:
 - one primary vertex with at least 3 inner detector tracks
- J/Ψ candidate: muon pair
 - □ common vertex with chi2/dof<10
 - □ pt1>4 GeV and pt2>2.5GeV
 - \Box refitted mass +/-3 σ from fitted mean
- B candidate: 3-rd inner detector track
 - □ Pt>2.5 GeV
 - muon pair refitted with J/Y world average mass to 3-th track with K mass hypothesis to a common vertex with chi2/dof<6
 - □ overall pt of the three tracks above 10 GeV
- Vertex displacement Lxy> 300 um:
 - ☐ Reject events where muon pair from different PV
 - ☐ Pick-up PV with highest SPT 2 or containing muon pair or 3-rd track
 - ☐ PV refitted removing muon pair and 3-rd track

$B^0 \rightarrow J/\Psi + K^*(K^+\pi^-) \text{ vs } B_s \rightarrow J/\Psi + \phi(K^-K^+)$ selection

- Selection specific to $B^0 \rightarrow J/\Psi + K^*(K^+\pi^-)$ and c.c. :
 - □ K* candidate from 2 opposite charge tracks different from muons and pt>0.5 GeV and $|\eta|$ < 2.5
 - \Box The two tracks and the muon pair constrained to J/Ψ mass are fitted to a common vertex with chi2/dof < 2.5
 - \square K⁺ π ⁻ and K⁻ π ⁺ hypothesis are tested and the one nearest to the K^{*} mass is kept
 - □ K* must have mass in the range [846,946] MeV and pt>2.5 GeV
- Selection specific to $B_s \rightarrow J/\Psi + \phi(K^-K^+)$ and c.c. :

 - \Box The two tracks and the muon pair constrained to J/Ψ mass are fitted to a common vertex with chi2/dof < 2
- If there are more than one candidates the one with the lowest chi2/dof is chosen

Open charm differential cross-section

